Section 7.3

Row-Echelon Form

Row-echelon form means that it has a stair-step pattern with leading coefficients of 1. Once the system is in echelon form, we use back substitution to solve it.

Gaussian Elimination

Two systems of equations are equivalent if they have the same solution set. To solve a system that is not in row-echelon form, first convert it to an equivalent system that is in row-echelon form by using the following operations.

Operations That Produce Equivalent Systems

Each of the following row operations on a system of linear equations produces an equivalent system of linear equations.

- a) Interchange two equations.
- b) Multiply one of the equations by a nonzero constant.
- c) Add a multiple of one of the equations to another to replace the latter equation.

Problem 1. Solve the system of linear equations.

a)
$$\begin{cases} x - 4y + 2z = 4\\ 2x + 4y - z = 7\\ 2x - 12y + 5z = -3 \end{cases}$$

b)
$$\begin{cases} 3x - 4y + 4z = 7\\ x - y - 2z = 2\\ 2x - 3y + 6z = 5 \end{cases}$$

c)
$$\begin{cases} 3x + 2y + z = 3\\ x - 3y + z = 4\\ 6x + 4y + 2z = -1 \end{cases}$$

Problem 2. Find the equation of the parabola $y = ax^2 + bx + c$ that passes through the points (3, 1), (2, 3), and (0, -5).